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1 Orientation Part I

In this section, we define orientable manifold using the concept of frames.

Definition 1.1 (Orientation of Rn)
Two ordered bases of Rn are said to be equivalent if the change-of-basis matrix has positive deter-

minant. An orientation of Rn is an equivalence class of ordered bases.

To define orientation for general manifold, intuitively, we want to orient the tangent space at each
point in a ”coherent” manner.

Definition 1.2 (Frame)
A frame for the tangent bundle TM →M over an open set U is a collection of nowhere-vanishing

(possibly discontinuous) vector fields (X1, · · · , Xn), such that (X1,p, · · · , Xn,p) forms a basis of TpM
for every p ∈ U .

The definition of frame can be generalised to any vector bundle, but we focus on tangent bundle
for now. We say two frames are equivalent if the change-of-basis matrix has positive determinant at
every point in M . Now define pointwise orientation µ to be the assignment of orientation µp to
each TpM . In other words, µ is the equivalent class of a (possibly discontinuous) global frame. We
say µ is continuous at p if p has an open neighbourhood U such that there exist a continuous frame
(X1, · · · , Xn), which satisfies µq = [(X1,q, · · · , Xn,q)] for every q ∈ U . An orientation of M is an
pointwise orientation that is continuous everywhere. A manifold is said to be orientable if it has an
orientation. A manifold together with an orientation is said to be oriented.

Proposition 1.3
A connected orientable manifold M has exactly two orientations.

Proof: Let µ and ν be two orientations on M . Define function f : M → {±1} by

f(p) =

{
1 µp = νp

−1 µp 6= νp

For any p ∈ M , there is connected neighbourhood U such that µq = [(X1,q, · · · , Xn,q)], νq =
[(Y1,q, · · · , Yn,q)]. The determinant of change-of-basis matrix is a continuous function, so it is everywhere-
positive or everywhere-negative, so f is constant on U . It is easy to prove that a locally constant
function on a connected set is constant, so the proposition is proved. �

2 Orientation Part II

In this section, we characterise orientation by nowhere-vanishing top forms, which turns out to be
convenient in many cases.

We first discuss the pullback of differential forms. Suppose F : N →M is a C∞ map of manifolds.
There is differential at p ∈ N

F∗,p : TpN → TpM.

Now define pullback map F ∗∗,p :
∧k

TpM →
∧k

TpN of k-covector at p by

F ∗p (f)(v1, · · · , vk) = f(F∗,p(v1), · · · , F∗,p(vk)), vi ∈ TpN.
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This is a generalization of dual map. Define pullback map F ∗ : Ωk(M) → Ωk(N) of differential
k-form point-wise:

(F ∗(ω))p = F ∗p (ωp).

Pullback map is R-linear, respects wedge product, and commutes with exterior derivative (hence
it is a chain map between de Rham complexes). Also notice covector fields have pullback while vector
fields generally cannot be push forward. As a result, information can be more easily transferred
between manifolds in the form of covector fields.

Proposition 2.1
Given smooth map F : N → M , point p ∈ N , (U, x1, · · · , xn) and (V, y1, · · · , ym) be coordinate

charts about p ∈ N and F (p) ∈M respectively. Then the pullback of dyi

F ∗p (dyi) =
∑
j

∂F i

∂xj
dxj = dF i

where F i = yi ◦ F .

Proof: Skipped. �

An immediate consequence is that when m = n, F ∗p (dy1 ∧ · · · ∧ dyn) = JF (p) dx1 ∧ · · · ∧ dxn.
Now we give an equivalent definition of orientable manifold. An atlas {(Uα, φα)} of M is said to

be oriented if all transition functions gαβ = φαφ
−1
β are orientation-preserving, that is, their Jacobian

determinant are everywhere positive. An oriented manifold is a manifold with oriented atlas.

Proposition 2.2
M is orientable if and only if it has an oriented atlas.

Proof: The proof can be found on [Tu] (Theorem 21.10). The idea is to show that a continuous
pointwise orientation induces an oriented atlas, and vice versa. �

Proposition 2.3
An n-manifold M is orientable if and only if it has a global nowhere vanishing n-form.

Proof: By Proposition 2.1, T : Rn → Rn is orientation-preserving if and only if T ∗dx1 ∧ · · · ∧ dxn
is a positive multiple of dx1 ∧ · · · ∧ dxn.

(⇐): Let ω be the nowhere vanishing n-form. Let φα : Uα → Rn be a chart, dx1 ∧ · · · ∧ dxn be
n-form on Rn. Then since φ∗αdx

1 ∧ · · · ∧ dxn is nowhere vanishing, there exist nowhere vanishing real
valued function fα on Uα such that φ∗αdx

1 ∧ · · · ∧ dxn = fαω. Apparently fα is ether everywhere
positive or everywhere negative. ”Flip” all charts with negative fα to ensure that every chart has
positive fα. Now that every chart is in the same ”direction” with ω, it is easy to verify that (φα◦φ−1β )∗

pulls dx1 ∧ · · · ∧ dxn to its positive multiple. So every transition function is orientation-preserving.
(⇒): Use partition of unity to piece together φ∗αdx

1 ∧ · · · ∧ dxn. �

Any two global nowhere vanishing n-forms ωand ω′ on an orientable manifold M of dimension
n differ by a nowhere vanishing function: ω = fω′. If M is connected, then f is ether everywhere
positive or everywhere negative. We say that ω and ω′ are equivalent if f is positive. Either class is
called an orientation on M , written [M ].

We now discuss orientation of manifold with boundary. A manifold M of dimension n with
boundary is given by an atlas {(Uα, φα)}, where Uα is homeomorphic to ether Rn or upper half space
Hn. The boundary of M is an orientable (n− 1)-manifold, as a result of the following lemma.

Lemma 2.4
Let T : Hn → Hn be a diffeomorphism of the upper half space with everywhere positive Jacobian

determinant. T induces a diffeomorphism T̄ of ∂Hn ≈ Rn−1 to itself, which has positive Jacobian
determinant everywhere.

Proof: Lemma 3.4 on GTA82. �
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Given standard orientation dx1 ∧ · · · ∧ dxn on Hn, the induced orientation on ∂Hn is defined
by (−1)ndx1 ∧ · · · ∧ dxn−1 for n > 1, and −1 for n = 1. The induced orientation on ∂M is defined
by the pullback of induced orientation on ∂Hn by coordinate chart.

3 Integration

The integration of top form of Rn is defined in the usual sense. In general, let M be an orientable
manifold, choose an orientation [M ]. Given a top form τ ∈ Ωnc (M), we define its integral by parti-
tioning τ with respect to the oriented atlas, integrating individually the pullback of each component,
and then taking the sum. Namely,∫

M

τ =
∑
α

∫
Uα

ρατ =
∑
α

∫
φα(Uα)

(φ−1α )∗(ρατ)

This is in fact well-defined.

Proposition 3.1
The definition of the integral is independent of the oriented atlas and the partition of unity.

Proof: We first observe that when T is a diffeomorphism from V ⊆ Rn to U ⊆ Rn, we have∫
U

f dx1 ∧ · · · ∧ dxn =

∫
V

f ◦ T |J(T )| dy1 ∧ · · · ∧ dyn.

By Proposition 2.1, we have
∫
V
T ∗ω = ±

∫
U
ω where the sign depends on whether T is orientation-

preserving.
Now we get to the proof of the proposition. Let {(Uα, φα)} and {(Vβ , ψβ)} be two oriented atlas

of the same orientation, ρα and χβ are partitions of unity subordinate to {Uα} and {Vβ} respectively.
We now have ∑

α

∫
Uα

ρατ =
∑
α,β

∫
Uα

ραχβτ.

Notice ραχβτ has support in Sαβ = Uα ∩ Vβ . Now use the observation, we have∫
Uα

ραχβτ =

∫
φα(Sαβ)

(φ−1α )∗(ραχβτ) =

∫
ψβ(Sαβ)

(φα ◦ ψ−1β )∗
(
(φ−1α )∗(ραχβτ)

)
=

∫
Vβ

ραχβτ.

So
∑
α

∫
Uα
ρατ =

∑
α,β

∫
Vβ
ραχβτ =

∑
β

∫
Vβ
χβτ. �

The observation in the proof of Proposition 3.1 can be easily generalized. Let F : N → M be a
diffeomorphism, then ∫

N

F ∗τ = ±
∫
M

τ.

We now prove the Stokes’ Theorem.

Theorem 3.2 (Stokes’ Theorem)
If ω is an (n− 1)-form with compact support on an oriented n-manifold M , and if ∂M is given the

induced orientation, then ∫
M

dω =

∫
∂M

ω.

Proof: It is easy to prove Stokes’ theorem for Rn and Hn by direct calculation. For the general
case, let {Uα} be an oriented atlas. By linearity, we only need to show that for each α, there is∫

M

d ραω =

∫
∂M

ραω.
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To prove this, notice that ραω has compact support in Uα, so we can shrink the domain of integration.
Now we only need to show that ∫

Uα

d ραω =

∫
∂Uα

ραω.

This is obvious since Uα is diffeomorphic to Rn or Hn, and we already know that Stokes’ theorem is
true for Rn and Hn. �

To end this section, we mention a useful theorem which makes computations easier. This theorem
allow us to ”chop up” the manifold into a finite number of pieces, and compute the integral on each
piece separately by means of local parametrizations.

Proposition 3.3 (Integration Over Parametrizations)
Let M be an oriented smooth n-manifold (with or without boundary), and let ω be a compactly

supported n-form on M . D1, · · · , Dk are open domains of integration (bounded subset whose bound-
ary has measure zero) in Rn, and for i = 1, · · · , k. Given smooth maps Fi : D̄i → M and let
Wi = Fi(Di), if

(i) Fi|Di are orientation-preserving diffeomorphisms;

(ii) Wi do not intersect each other;

(iii) supp ω ⊆ ∪D̄i;

then ∫
ω =

k∑
i=1

∫
Di

F ∗i ω.

Proof: By linearity of the definition of integration, it suffices to prove the proposition for ω with
its support inside a single chart. Now pullback the integration through the chart to Rn, and recall
the properties of integrals on Rn. Details can be found on GTA218 (Proposition 16.8). �
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